Checklist of learning and understanding

Quadratic equations can be solved by:

- factorisation
- completing the square
- using the quadratic formula $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

Solving simultaneous equations where one is linear and one is quadratic

- Rearrange the linear equation to make either x or y the subject.
- Substitute this for x or y in the quadratic equation and then solve.

Maximum and minimum points and lines of symmetry

For a quadratic function $f(x) = ax^2 + bx + c$ that is written in the form $f(x) = a(x - h)^2 + k$.

- the line of symmetry is $x = h = -\frac{b}{2a}$
- if a > 0, there is a minimum point at (h, k)
- if a < 0, there is a maximum point at (h, k).

Quadratic equation $ax^2 + bx + c = 0$ and corresponding curve $y = ax^2 + bx + c$

- Discriminant = $b^2 4ac$.
- If $b^2 4ac > 0$, then the equation $ax^2 + bx + c = 0$ has two distinct real roots.
- If $b^2 4ac = 0$, then the equation $ax^2 + bx + c = 0$ has two equal real roots.
- If $b^2 4ac < 0$, then the equation $ax^2 + bx + c = 0$ has no real roots.
- The condition for a quadratic equation to have real roots is $b^2 4ac \ge 0$.

Intersection of a line and a general quadratic curve

- If a line and a general quadratic curve intersect at one point, then the line is a tangent to the curve at that point.
- Solving simultaneously the equations for the line and the curve gives an equation of the form $ax^2 + bx + c = 0$.
- $b^2 4ac$ gives information about the intersection of the line and the curve.

b^2-4ac	Nature of roots	Line and parabola
> 0	two distinct real roots	two distinct points of intersection
= 0	two equal real roots	one point of intersection (line is a tangent)
< 0	no real roots	no points of intersection

END-OF-CHAPTER REVIEW EXERCISE 1

1 A curve has equation y = 2xy + 5 and a line has equation 2x + 5y = 1.

The curve and the line intersect at the points A and B. Find the coordinates of the midpoint of the line AB.

[4]

2 a Express $9x^2 - 15x$ in the form $(3x - a)^2 - b$.

[2]

b Find the set of values of x that satisfy the inequality $9x^2 - 15x < 6$.

. . .

[2]

Find the real roots of the equation $\frac{36}{x^4} + 4 = \frac{25}{x^2}$.

[4]

4 Find the set of values of k for which the line y = kx - 3 intersects the curve $y = x^2 - 9x$ at two distinct points.

[4]

- Find the set of values of the constant k for which the line y = 2x + k meets the curve $y = 1 + 2kx x^2$ at two distinct points.
- [5]

6 a Find the coordinates of the vertex of the parabola $y = 4x^2 - 12x + 7$.

[4]

b Find the values of the constant k for which the line y = kx + 3 is a tangent to the curve $y = 4x^2 - 12x + 7$.

[3]

- 7 A curve has equation $y = 5 2x + x^2$ and a line has equation y = 2x + k, where k is a constant.
 - Show that the x-coordinates of the points of intersection of the curve and the line are given by the equation $x^2 4x + (5 k) = 0$.

[1]

- **b** For one value of k, the line intersects the curve at two distinct points, A and B, where the coordinates of A are (-2, 13). Find the coordinates of B.
- [3]
- c For the case where the line is a tangent to the curve at a point C, find the value of k and the coordinates of C.

[4]

- 8 A curve has equation $y = x^2 5x + 7$ and a line has equation y = 2x 3.
 - a Show that the curve lies above the x-axis.

[3]

b Find the coordinates of the points of intersection of the line and the curve.

[3]

c Write down the set of values of x that satisfy the inequality $x^2 - 5x + 7 < 2x - 3$.

[1]

- 9 A curve has equation $y = 10x x^2$.
 - **a** Express $10x x^2$ in the form $a (x + b)^2$.

[3]

b Write down the coordinates of the vertex of the curve.

[2]

c Find the set of values of x for which $y \le 9$.

[3]

- 10 A line has equation y = kx + 6 and a curve has equation $y = x^2 + 3x + 2k$, where k is a constant.
 - i For the case where k = 2, the line and the curve intersect at points A and B.
 - Find the distance AB and the coordinates of the mid-point of AB.

[5]

ii Find the two values of k for which the line is a tangent to the curve.

[4]

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q9 November 2011

- 11 A curve has equation $y = x^2 4x + 4$ and a line has the equation y = mx, where m is a constant.
 - i For the case where m = 1, the curve and the line intersect at the points A and B.

Find the coordinates of the mid-point of AB.

[4]

ii Find the non-zero value of m for which the line is a tangent to the curve, and find the coordinates of the point where the tangent touches the curve.

[5]

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q7 June 2013

Express $2x^2 - 4x + 1$ in the form $a(x + b)^2 + c$ and hence state the coordinates of the minimum point, A, on the curve $y = 2x^2 - 4x + 1$.

The line x - y + 4 = 0 intersects the curve $y = 2x^2 - 4x + 1$ at the points P and Q.

It is given that the coordinates of P are (3, 7).

ii Find the coordinates of Q.

[3]

iii Find the equation of the line joining Q to the mid-point of AP.

[3]

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q10 June 2011

Checklist of learning and understanding

Functions

- A function is a rule that maps each x value to just one y value for a defined set of input values.
- A function can be either one-one or many-one.
- The set of input values for a function is called the domain of the function.
- The set of output values for a function is called the range (or image set) of the function.

Composite functions

- fg(x) means the function g acts on x first, then f acts on the result.
- fg only exists if the range of g is contained within the domain of f.
- In general, fg(x) ≠ gf(x).

Inverse functions

- The inverse of a function f(x) is the function that undoes what f(x) has done. $f(x) = f^{-1} f(x) = x$ or if y = f(x) then $x = f^{-1}(y)$
- The inverse of the function f(x) is written as f⁻¹(x).
- The steps for finding the inverse function are:
 - **Step 1:** Write the function as y =
 - Step 2: Interchange the x and y variables.
 - Step 3: Rearrange to make y the subject.
- The domain of f⁻¹(x) is the range of f(x).
- The range of f⁻¹(x) is the domain of f(x).
- An inverse function f⁻¹(x) can exist if, and only if, the function f(x) is one-one.
- The graphs of f and f⁻¹ are reflections of each other in the line y = x.
- If f(x) = f⁻¹(x), then the function f is called a self-inverse function.
- If f is self-inverse then ff(x) = x.
- The graph of a self-inverse function has y = x as a line of symmetry.

Transformations of functions

- The graph of y = f(x) + a is a translation of y = f(x) by the vector $\begin{pmatrix} 0 \\ a \end{pmatrix}$.
- The graph of y = f(x + a) is a translation of y = f(x) by the vector $\begin{pmatrix} -a \\ 0 \end{pmatrix}$
- The graph of y = -f(x) is a reflection of the graph y = f(x) in the x-axis.
- The graph of y = f(-x) is a reflection of the graph y = f(x) in the y-axis.
- The graph of y = af(x) is a stretch of y = f(x), stretch factor a, parallel to the y-axis.
- The graph of y = f(ax) is a stretch of y = f(x), stretch factor $\frac{1}{a}$, parallel to the x-axis.

Combining transformations

- When two vertical transformations or two horizontal transformations are combined, the order in which they are applied may affect the outcome.
- When one horizontal and one vertical transformation are combined, the order in which they are applied does not affect the outcome.
- · Vertical transformations follow the 'normal' order of operations, as used in arithmetic
- Horizontal transformations follow the opposite order to the 'normal' order of operations, as
 used in arithmetic.

END-OF-CHAPTER REVIEW EXERCISE 2

1 Functions f and g are defined for $x \in \mathbb{R}$ by:

 $f: x \mapsto 3x - 1$

 $g: x \mapsto 5x - x^2$

Express gf(x) in the form $a - b(x - c)^2$, where a, b and c are constants.

[5]

2

The diagram shows a sketch of the curve with equation y = f(x).

a Sketch the graph of $y = -f\left(\frac{1}{2}x\right)$.

[3]

b Describe fully a sequence of two transformations that maps the graph of y = f(x) onto the graph of y = f(3 - x).

[2]

3 A curve has equation $y = x^2 + 6x + 8$.

a Sketch the curve, showing the coordinates of any axes crossing points.

[2]

b The curve is translated by the vector $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, then stretched vertically with stretch factor 3.

Find the equation of the resulting curve, giving your answer in the form $y = ax^2 + bx$.

[4]

4 The function $f: x \mapsto x^2 - 2$ is defined for the domain $x \ge 0$.

a Find $f^{-1}(x)$ and state the domain of f^{-1} .

[3]

b On the same diagram, sketch the graphs of f and f⁻¹.

[3]

on the same diagram, sketch the graphs of 1 and 1 .

[3]

The function $f: x \mapsto -x^2 + 6x - 5$ is defined for $x \ge m$, where m is a constant.

i Express $-x^2 + 6x - 5$ in the form $a(x+b)^2 + c$, where a, b and c are constants.

ii State the smallest possible value of m for which f is one-one.

[1]

iii For the case where m = 5, find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .

[4]

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q9 November 2015

(2)

6 The function $f: x \mapsto x^2 - 4x + k$ is defined for the domain $x \ge p$, where k and p are constants.

i Express f(x) in the form $(x+a)^2 + b + k$, where a and b are constants.

[2]

ii State the range of f in terms of k.

[1]

iii State the smallest value of p for which f is one-one.

[1]

iv For the value of p found in part iii, find an expression for $f^{-1}(x)$ and state the domain of f^{-1} , giving your answer in terms of k.

[4]

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q8 June 2012

7

The diagram shows the function f defined for $-1 \le x \le 4$, where

$$f(x) = \begin{cases} 3x - 2 & \text{for } -1 \le x \le 1, \\ \frac{4}{5 - x} & \text{for } 1 < x \le 4. \end{cases}$$

i State the range of f. [1]

ii Copy the diagram and on your copy sketch the graph of $y = f^{-1}(x)$. [2]

iii Obtain expressions to define the function f⁻¹, giving also the set of values for which each expression is valid.
[6]

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q10 June 2014

•

8 The function f is defined by $f(x) = 4x^2 - 24x + 11$, for $x \in \mathbb{R}$.

i Express f(x) in the form $a(x-b)^2 + c$ and hence state the coordinates of the vertex of the graph of y = f(x). [4]

The function g is defined by $g(x) = 4x^2 - 24x + 11$, for $x \le 1$.

ii State the range of g. [2]

iii Find an expression for $g^{-1}(x)$ and state the domain of g^{-1} .

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q10 November 2012

2

9 i Express $2x^2 - 12x + 13$ in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]

ii The function f is defined by $f(x) = 2x^2 - 12x + 13$, for $x \ge k$, where k is a constant. It is given that f is a one-one function. State the smallest possible value of k. [1]

The value of k is now given to be 7.

iii Find the range of f. [1]

iv Find the expression for $f^{-1}(x)$ and state the domain of f^{-1} . [5]

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q8 June 2013

e

10 i Express $x^2 - 2x - 15$ in the form $(x + a)^2 + b$.

The function f is defined for $p \le x \le q$, where p and q are positive constants, by

$$f: x \mapsto x^2 - 2x - 15$$
.

The range of f is given by $c \le f(x) \le d$, where c and d are constants.

ii State the smallest possible value of c.

[1]

[2]

For the case where c = 9 and d = 65,

iii find
$$p$$
 and q , [4]

iv find an expression for
$$f^{-1}(x)$$
.

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q10 November 2014

- 11 The function f is defined by $f: x \mapsto 2x^2 12x + 7$ for $x \in \mathbb{R}$.
 - i Express f(x) in the form $a(x-b)^2 c$. [3]
 - ii State the range of f. [1]
 - iii Find the set of values of x for which f(x) < 21.

The function g is defined by $g: x \mapsto 2x + k$ for $x \in \mathbb{R}$.

iv Find the value of the constant k for which the equation gf(x) = 0 has two equal roots.

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q9 June 2010

12 Functions f and g are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto 2x + 1$$

$$g: x \mapsto x^2 - 2$$
.

- i Find and simplify expressions for fg(x) and gf(x). [2]
- ii Hence find the value of a for which fg(a) = gf(a). [3]
- iii Find the value of b ($b \neq a$) for which g(b) = b.
- iv Find and simplify an expression for $f^{-1}g(x)$.

The function h is defined by

$$h: x \mapsto x^2 - 2$$
, for $x \le 0$.

v Find an expression for
$$h^{-1}(x)$$
.

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q11 June 2011

13 Functions f and g are defined by

$$f: x \mapsto 2x^2 - 8x + 10 \text{ for } 0 \le x \le 2$$

$$g: x \mapsto x$$

for
$$0 \le x \le 10$$
.

- i Express f(x) in the form $a(x+b)^2 + c$, where a, b and c are constants.
- ii State the range of f. [1]
- iii State the domain of f⁻¹.
- iv Sketch on the same diagram the graphs of y = f(x), y = g(x) and $y = f^{-1}(x)$, making clear the relationship between the graphs. [4]
- v Find an expression for $f^{-1}(x)$.

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q11 November 2011

[3]

Checklist of learning and understanding

Midpoint, gradient and length of line segment

- Midpoint, M, of PQ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.
- Gradient of PQ is $\frac{y_2 y_1}{x_2 x_1}$.
- Length of segment PQ is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$

Parallel and perpendicular lines

- If the gradients of two parallel lines are m_1 and m_2 , then $m_1 = m_2$.
- If the gradients of two perpendicular lines are m_1 and m_2 , then $m_1 \times m_2 = -1$.

The equation of a straight line is:

 $y - y_1 = m(x - x_1)$, where m is the gradient and (x_1, y_1) is a point on the line.

The equation of a circle is:

- $(x-a)^2 + (y-b)^2 = r^2$, where (a, b) is the centre and r is the radius.
- Review COPY Cambridge University Press $x^2 + y^2 + 2gx + 2fy + c = 0$, where (-g, -f) is the centre and $\sqrt{g^2 + f^2 - c}$ is the radius.

END-OF-CHAPTER REVIEW EXERCISE 3

1 A line has equation 2x + y = 20 and a curve has equation $y = a + \frac{18}{x - 3}$, where a is a constant.

Find the set of values of a for which the line does not intersect the curve.

[4]

2

The diagram shows the curve $y = 7\sqrt{x}$ and the line y = 6x + k, where k is a constant.

The curve and the line intersect at the points A and B.

i For the case where k = 2, find the x-coordinates of A and B.

Find the value of k for which y = 6x + k is a tangent to the curve $y = 7\sqrt{x}$.

in y ou was a danger to the out ve y . Vu.

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q5 June 2012

 $3 \land A$ is the point (a, 3) and B is the point (4, b).

The length of the line segment AB is $4\sqrt{5}$ units and the gradientis $-\frac{1}{2}$.

Find the possible values of a and b.

[6]

[4]

4 The curve $y = 3\sqrt{x-2}$ and the line 3x - 4y + 3 = 0 intersect at the points P and Q.

Find the length of PQ.

[6]

5 The line ax - 2y = 30 passes through the points A(10, 10) and B(b, 10b), where a and b are constants.

a Find the values of a and b.

[3]

- b Find the coordinates of the midpoint of AB.
 - ordinates of the midpoint of AB. [1]
- c Find the equation of the perpendicular bisector of the line AB.

[3]

6 The line with gradient -2 passing through the point P(3t, 2t) intersects the x-axis at A and the y-axis at B.

i Find the area of triangle AOB in terms of t.

[3]

The line through P perpendicular to AB intersects the x-axis at C.

ii Show that the mid-point of PC lies on the line y = x.

[4]

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q6 June 2015

7 The point P is the reflection of the point (-7, 5) in the line 5x - 3y = 18.

Find the coordinates of P. You must show all your working.

[7]

- 8 The curve $y = x + 2 \frac{4}{x}$ and the line x 2y + 6 = 0 intersect at the points A and B.
 - a Find the coordinates of these two points. [4]
 - b Find the perpendicular bisector of the line AB. [4]
- The line y = mx + 1 intersects the circle $x^2 + y^2 19x 51 = 0$ at the point P(5, 11).
 - a Find the coordinates of the point Q where the line meets the curve again. [4]
 - **b** Find the equation of the perpendicular bisector of the line *PQ*. [3]
 - c Find the x-coordinates of the points where this perpendicular bisector intersects the circle.

Give your answers in exact form.

10

The diagram shows a triangle ABC in which A is (3, -2) and B is (15, 22). The gradients of AB,

AC and BC are 2m, -2m and m respectively, where m is a positive constant.

- i Find the gradient of AB and deduce the value of m.
- ii Find the coordinates of C. [4]

The perpendicular bisector of AB meets BC at D.

iii Find the coordinates of D. [4]

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q8 June 2010

- 11 The point A has coordinates (-1, 6) and the point B has coordinates (7, 2).
 - i Find the equation of the perpendicular bisector of AB, giving your answer in the form y = mx + c. [4]
 - ii A point C on the perpendicular bisector has coordinates (p, q). The distance OC is 2 units, where O is the origin. Write down two equations involving p and q and hence find the coordinates of the possible positions of C.
 [5]

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q7 November 2013

[4]

[2]

12 The coordinates of A are (-3, 2) and the coordinates of C are (5, 6).

The mid-point of AC is M and the perpendicular bisector of AC cuts the x-axis at B.

Find the equation of MB and the coordinates of B.

[5]

Show that AB is perpendicular to BC.

[2]

iii Given that ABCD is a square, find the coordinates of D and the length of AD.

[2]

Cambridge International AS & A Level Mathematics 9709 Paper 11 Q9 June 2012

13 The points A(1, -2) and B(5, 4) lie on a circle with centre C(6, p).

a Find the equation of the perpendicular bisector of the line segment AB.

[4]

b Use your answer to part a to find the value of p.

[1]

Find the equation of the circle.

[4]

14

ABCD is a trapezium with AB parallel to DC and angle $BAD = 90^{\circ}$.

Calculate the coordinates of D.

[7]

b Calculate the area of trapezium ABCD.

[2]

15 The equation of a curve is xy = 12 and the equation of a line is 3x + y = k, where k is a constant.

a In the case where k = 20, the line intersects the curve at the points A and B.

Find the midpoint of the line AB.

[4]

b Find the set of values of k for which the line 3x + y = k intersects the curve at two distinct points.

[4]

- 16 A is the point (-3, 6) and B is the point (9, -10).
 - a Find the equation of the line through A and B.

[3]

b Show that the perpendicular bisector of the line AB is 3x - 4y = 17.

[3]

c A circle passes through A and B and has its centre on the line x = 15. Find the equation of this circle.

[4]

- 17 The equation of a circle is $x^2 + y^2 8x + 4y + 4 = 0$.
 - a Find the radius of the circle and the coordinates of its centre.

[4]

Find the x-coordinates of the points where the circle crosses the x-axis, giving your answers in exact form.

[4]

c Show that the point $A(6, 2\sqrt{3} - 2)$ lies on the circle.

[2]

Show that the equation of the tangent to the circle at Λ is $\sqrt{3}x + 3y = 12\sqrt{3} - 6$.

[4]

Exercise 1G

- a $0 \le x \le 3$
- b x < -2 or x > 3
- **c** 4 ≤ x ≤ 6
- **d** $-\frac{3}{2} < x < 2$
- e $-6 \le x \le 5$ f $x < -\frac{1}{2}$ or $x > \frac{1}{3}$
- **a** $x \le -5 \text{ or } x \ge 5$ **b** $-5 \le x \le -2$

 - **c** x < -7 or x > 1 **d** $-\frac{3}{2} \le x \le \frac{2}{7}$

 - e $\frac{4}{3} < x < \frac{5}{2}$ f x < -4 or $x > \frac{1}{2}$
- **a** -9 < x < 4 **b** x < 7 or x > 8

 - **c** $-12 \le x \le 1$ **d** -3 < x < 2

 - e x < -4 or x > 1 f $-\frac{1}{2} < x < \frac{3}{5}$

 - g $x \le -9 \text{ or } x \ge 1$ h x < -2 or x > 5
 - i $-\frac{7}{2} < x < \frac{5}{3}$
- 4 $-3 < x < \frac{5}{2}$
- 5 **a** $5 \le x < 7$
- c x < -2 or $x \ge 3$
- x < -5 or x > 8
- 7 **a** $1 < x \le \frac{3}{2}$
- c $-1 \le x < 1 \text{ or } x \ge 5$
- d $-3 \le x < 2 \text{ or } x \ge 5$
- e $-5 \le x < -2 \text{ or } 1 \le x < 2$
- **f** $x < -4 \text{ or } \frac{1}{2} \le x < 5$

Exercise 1H

- a Two equal roots
- b Two distinct roots

 - c Two distinct roots d Two equal roots
 - e No real roots
- f Two distinct roots
- No real roots
- b = -2, c = -35
- a $k = \pm 4$
- **b** k = 4 or k = 1
- c $k = \frac{1}{4}$
- **d** k = 0 or k = 2
- **e** k = 0 or $k = -\frac{8}{9}$ **f** k = -10 or k = 14
- a k > -13
- **b** $k < \frac{57}{8}$
- c k < 2
- d $k < \frac{1}{2}$
- e $k > \frac{3}{2}$
- f $k < \frac{25}{16}$

- **c** $k > \frac{26}{5}$ **d** $k > -\frac{39}{8}$

 - e $5 \sqrt{21} < k < 5 + \sqrt{21}$
- f $7 2\sqrt{10} < k < 7 + 2\sqrt{10}$
- $k \leq \frac{25}{9}$
- Proof
- 10 Proof
- 11 $k \leq -2\sqrt{2}$

Exercise 1!

- -5, -9
- -1, 7
- 3 5
- a ±10
- **b** (2, 4), (-2, -4)
- -6, -2, (-1, 12), (1, 4)
- k < -2 or k > 6
- $k < -4\sqrt{3} \text{ or } k > 4\sqrt{3}$
- 9 -3 < m < 1
- 10 k > 6
- 11
- 12 Proof
- 13 Proof

End-of-chapter review exercise 1

- 2 **a** $\left(3x \frac{5}{2}\right)^2 \frac{25}{4}$ **b** $-\frac{1}{3} < x < 2$
- 3 $x = \pm 2, x = \pm \frac{3}{2}$
- $x < -9 2\sqrt{3}$ or $x > -9 + 2\sqrt{3}$

- 6 a $(1\frac{1}{2}, -2)$
- **b** k = -4 or k = -20
- 7 **a** Proof **b** (6, 29)

 - k = 1, C = (2, 5)
- **8** a Proof **b** (2, 1), (5, 7),
- - c 2 < x < 5
- 9 **a** $25 (x 5)^2$ **b** (5, 25)

 - $c \ x \le 1 \text{ or } x \ge 9$
- 10 i $3\sqrt{5}$, $\left(-\frac{1}{2}, 5\right)$ ii k = 3 or 11
- 11 i $\left(2\frac{1}{2}, 2\frac{1}{2}\right)$ ii m = -8, (-2, 16)
- 12 **i** $2(x-1)^2 1$, (1,-1) **ii** $\left(-\frac{1}{2}, 3\frac{1}{2}\right)$
 - iii $y-3=-\frac{1}{5}(x-2)$

2 Functions

Prerequisite knowledge

- 1 10
- 2 3-2x
- 3 $f^{-1}(x) = \frac{x-4}{5}$
- $2(x-3)^2-13$

Exercise 2A

- a function, one-one b function, many-one
 - c function, one-one d function, one-one
 - e function, one-one f function, one-one
 - function, one-one h not a function
- 2

b Many-one

- **b** each input does not have a unique output
- a domain: $x \in \mathbb{R}, -1 \le x \le 5$
 - range: $f(x) \in \mathbb{R}, -8 \le f(x) \le 8$
 - **b** domain: $x \in \mathbb{R}, -3 \le x \le 2$ range: $f(x) \in \mathbb{R}, -7 \le f(x) \le 20$
- 5
- **a** f(x) > 12 **b** $-13 \le f(x) \le -3$
 - **c** $-1 \le f(x) \le 9$ **d** $2 \le f(x) \le 32$
 - e $\frac{1}{32} \le f(x) \le 16$ f $\frac{3}{2} \le f(x) \le 12$
- **a** $f(x) \ge -2$ **b** $3 \le f(x) \le 28$ **c** $f(x) \le 3$ **d** $-5 \le f(x) \le 7$

- **a** $f(x) \ge 5$ **b** $f(x) \ge -7$
 - c $-17 \le f(x) \le 8$ d $f(x) \ge 1$
- **a** $f(x) \ge -20$ **b** $f(x) \ge -6\frac{1}{3}$
- a $f(x) \leq 23$
- **b** $f(x) \leq 5$

10

- **b** $-1 \le f(x) \le 5$
- 11 $f(x) \ge k 9$
- 12 $g(x) \le \frac{a^2}{8} + 5$
- 14 a = 1 or a = -5
- 15 a $2(x-2)^2-3$ b k=4

 - $c \ x \in \mathbb{R}, -3 \le x \le 5$

11 Translation $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ followed by reflection in the y-axis or reflection in the y-axis followed by translation $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$

Translation $\begin{pmatrix} -10 \\ 0 \end{pmatrix}$ followed by a stretch parallel to the x-axis with stretch factor $\frac{1}{2}$ or stretch parallel to the x-axis with stretch factor $\frac{1}{2}$ followed by translation $\begin{pmatrix} -5 \\ 0 \end{pmatrix}$

End-of-chapter review exercise 2

- $1 \frac{25}{4} 9\left(x \frac{7}{6}\right)^2$

- **b** Translation $\begin{pmatrix} -3 \\ 0 \end{pmatrix}$ followed by a reflection in the y-axis or reflection in the y-axis followed by translation $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$

b $y = 3x^2 + 6x$

 $f^{-1}: x \mapsto \sqrt{x+2}$ for $x \ge -2$

- $i (x-3)^2 + 4$
- iii $f^{-1}(x) = 3 + \sqrt{4 x}$, domain is $x \le 0$
- i $(x-2)^2-4+k$
 - ii $f(x) \ge k 4$
 - iii p = 2
 - iv $f^{-1}(x) = 2 + \sqrt{x + 4 k}$, domain is $x \ge k 4$
- $i -5 \le f(x) \le 4$

ii

- iii $f^{-1}(x) = \begin{cases} \frac{1}{3}(x+2) & \text{for } -5 \le x \le 1\\ 5 \frac{4}{x} & \text{for } 1 < x \le 4 \end{cases}$
- i $4(x-3)^2-25$, vertex is (3,-25)
 - ii $g(x) \ge -9$
 - iii $g^{-1}(x) = 3 \frac{1}{2}\sqrt{x + 25}$, domain is $x \ge -9$
- i $2(x-3)^2-5$

 - iii $f(x) \ge 27$
 - iv $f^{-1}(x) = 3 + \sqrt{\frac{x+5}{2}}$, domain is $x \ge 27$
- 10 i $(x-1)^2 16$ ii -16 iii p = 6, q = 10 iv $f^{-1}(x) = 1 + \sqrt{x+16}$

11 i
$$2(x-3)^2-11$$

iii
$$-1 < x < 7$$
 iv $k = 22$

iv
$$k = 22$$

12 i
$$fg(x) = 2x^2 - 3$$
, $gf(x) = 4x^2 + 4x - 1$

ii
$$a = -1$$

iii
$$b = 2$$

iv
$$\frac{1}{2}(x^2-3)$$

iv
$$\frac{1}{2}(x^2 - 3)$$
 v $h^{-1}(x) = -\sqrt{x + 2}$

13 i
$$2(x-2)^2+2$$

ii
$$2 \le f(x) \le 10$$

iii
$$2 \le x \le 10$$

iv f(x): half parabola from (0, 10) to (2, 2), g(x): line through O at 45°;

 $f^{-1}(x)$: reflection of f(x) in g(x)

$$\mathbf{v} \quad \mathbf{f}^{-1}(x) = 2 - \sqrt{\frac{1}{2}(x-2)}$$

3 Coordinate geometry

Prerequisite knowledge

 $\left(-4\frac{1}{2}, -2\right), 13$

2 a
$$-\frac{1}{6}$$

3 a
$$\frac{2}{3}$$

4 a
$$(x-4)^2-21$$

b
$$4-\sqrt{21}$$
, $4+\sqrt{21}$

Exercise 3A

a $PO = 5\sqrt{5}$, $OR = 4\sqrt{5}$, $PR = 3\sqrt{5}$, right-angled triangle

> **b** $PQ = \sqrt{197}, QR = \sqrt{146}, PR = 3\sqrt{5},$ not right angled

17 units2 2

3 a = 3 or a = -9

 $b = 3 \text{ or } b = -5\frac{4}{5}$

a = 2, b = -15

a(-2,-1)

b (-1, 9)

c $2\sqrt{41}$, $2\sqrt{101}$

k = 4

 $38\frac{1}{2}$ units²

9 k = 2

10 (-2, 6) 11 a (5, 2)

b $8\sqrt{2}$

12 A(-5,5), B(7,3), C(-3,-3)

Exercise 3B

b Not collinear

Proof

4 (7, -1)

 $k = \frac{5}{7}$

k = 2 or k = 3

(0, -26)

8

b 5

a = 10, b = 4

b -2

c a = 6 or a = -4

11 a (6, 6)

b a = -4, b = 16, c = 11

c 4√145 **d** 100

Exercise 3C

1 **a** y = 2x + 1

b y = -3x - 1

c 2x + 3y = 1

2 a 2v = 3x - 3

b 9x + 5y = 2

c 2x - 3v = 9

a y = 3x + 4

b x + 2y = -8

 $e^{x} + 2v = 8$

d 3x + 2y = 18

4 **a** v = 2x + 2

b 5x + 3y = 9

c 7x + 3y = -6

(8, 2)

 $y = \frac{3}{2}x + 8$

b (0, 8)

c 39

a (6, 3)

b $y = -\frac{2}{3}x + 7$

8 **a** $y = \frac{4}{3}x + 10$ **b** $\left(-7\frac{1}{2}, 0\right), (0, 10)$

b 33

- **10** E(4, 6), F(10, 3)
- 11 10
- **12** (14, -2)
- 13 a v = -3x + 2
- **b** (-1, 5)
- c $5\sqrt{10}$, $4\sqrt{10}$
- **d** 100
- 14 a i $y = 4\frac{1}{2}$
- ii x + y = 7
- $(2\frac{1}{2},4\frac{1}{2})$
- 15 a v = 2x 7
- **b** $\left(4\frac{2}{5}, 1\frac{4}{5}\right)$
- 16 x + y = 8, 3x + y = 3. Other solutions possible.

Exercise 3D

- a (0, 0), 4
- **b** $(0,0), \frac{3\sqrt{2}}{2}$
- c (0, 2), 5
- **d** (5, −3), 2
- e $(-7, 0), 3\sqrt{2}$ f $(3, -4), \frac{3\sqrt{10}}{2}$

- **g** (4,-10), $\sqrt{6}$ **h** $(3\frac{1}{2}, 2\frac{1}{2})$, 10 **2 a** $x^2 + y^2 = 64$ **b** $(x-5)^2 + (y+2)^2 = 16$
 - $(x+1)^2 + (y-3)^2 = 7$
 - $\mathbf{d} \left(x \frac{1}{2} \right)^2 + \left(y + \frac{3}{2} \right)^2 = \frac{25}{4}$
- 3 $(x-2)^2 + (y-5)^2 = 25$
- 4 $(x+2)^2 + (y-2)^2 = 52$

- $(x-6)^2 + (y+5)^2 = 25$
- Proof
- $(x-5)^2 + y^2 = 8$ and $(x-5)^2 + (y-4)^2 = 8$
- 9 $(x-4)^2 + (y-2)^2 = 20$

- 10 $(x-3)^2 + (y+1)^2 = 16, (3,-1), 4$
- 11 $y = \frac{3}{4}x \frac{21}{2}$
- 12 $(x-5)^2 + (y-2)^2 = 29$
- **13 a** Proof **b** $(x+1)^2 + (y-4)^2 = 20$
- 14 $(x-5)^2 + (y+3)^2 = 40$
- 15 $(x-9)^2 + (y-2)^2 = 85$
- 16 $(x+3)^2 + (y+10)^2 = 100$, $(x-13)^2 + (y+10)^2 = 100$
- 17 a i $1+\sqrt{2}$
- ii Student's own answer
- **b** i $3+2\sqrt{2}$ ii Student's own answer

Exercise 3E

- 1 (-1, -4), (5, 2)
- $2 2\sqrt{5}$
- Proof
- 4 $-\frac{2}{29} < m < 2$
- 5 **a** (0, 6), (8, 10) **b** y = -2x + 16

 - c $(5-\sqrt{5}, 6+2\sqrt{5}), (5+\sqrt{5}, 6-2\sqrt{5})$
 - d 20√5
- 6 (4, 3)
- 7 **a** $(x-12)^2 + (y-5)^2 = 25$ and $(x-2)^2 + (y-10)^2 = 100$
 - b Proof

End-of-chapter review exercise 3

- 2 < a < 26
- 2 i $\frac{4}{9}$ and $\frac{1}{4}$ ii $\frac{49}{24}$
- a = -4, b = -1 or a = 12, b = 7
- 10
- **a** a = 5, b = -2
- **b** (4, -5)
- $y = -\frac{2}{5}x 3\frac{2}{5}$
- 6 i 16t²
- ii Proof
- 7 (13, -7)
- **a** (-2, 2), (4, 5) **b** $y = -2x + 5\frac{1}{2}$

 $\frac{19}{2} - \sqrt{113}, \frac{19}{2} + \sqrt{113}$

10 i 2, m = 1 ii (-1, 6)

iii (5, 12)

11 i y = 2x - 2 ii $(0, -2), (\frac{8}{5}, \frac{6}{5})$

12 i y = -2x + 6, (3, 0) ii Proof

iii (-1, 8), $2\sqrt{10}$

13 **a** $y = -\frac{2}{3}x + 3$ **b** p = -1

c $(x-6)^2 + (y+1)^2 = 26$

14 a (19, 13) **b** 104

15 a $\left(\frac{10}{3}, 10\right)$ **b** k < -12, k > 12

16 a $y = -\frac{4}{3}x + 2$ **b** Proof

e $(x-15)^2 + (y-7)^2 = 325$

17 **a** 4, (4, -2) **b** $4-2\sqrt{3}$, $4+2\sqrt{3}$

c Proof

d Proof

Cross-topic review exercise 1

 $x = \pm \frac{2}{3}, x = \pm \frac{\sqrt{2}}{2}$

3 a = 5, b = -2

4 Translation $\begin{pmatrix} 5 \\ 0 \end{pmatrix}$, vertical stretch with stretch factor 2

 $5 \quad v = -x^2 + 6x - 8$

7 **a** $1 \le x \le 5$

b −13, 3

8 $(k^2, -2k)$

6√5

10 a k = 14 **b** $y = \frac{1}{3}x + 4$ **11 a** (-1, -11), (6, 3) **b** $k < -\frac{25}{12}$

12 **a** $k = \frac{1}{2}$ **b** x > 5

13 i fg(x) = 5x, range is $fg(x) \ge 0$

ii $g^{-1}(x) = \frac{4-2x}{5x}$, domain is $0 < x \le 2$

14 a b = -5, c = -14

b i (2.5, -20.25) ii -3 < x < 8

15 a 2y = 3x + 25 **b** (-3, 8)

16 a $36 - (x - 6)^2$ **b** 36

c $x \le 36$, $g^{-1}(x) \ge 6$ d $g^{-1}(x) = 6 + \sqrt{36 - x}$

17 **a** $3(x+2)^2-13$ **b** (-2,-13)

c 6 < x < 18

18 a a = 12, b = 2

b −3

 $\mathbf{c} \quad \mathbf{g}^{-1}(x) = -3 + \sqrt{\frac{26 - x}{2}}$

19 a $(x-8)^2 + (y-3)^2 = 29$ **b** 5x + 2y = 75